Cardiac nerves affect myocardial stunning through reactive oxygen and nitric oxide mechanisms.

نویسندگان

  • Cheng-Hsiung Huang
  • Stephen F Vatner
  • Athanasios P Peppas
  • Guiping Yang
  • Raymond K Kudej
چکیده

The goal of this study was to investigate the role of cardiac nerves on the response to 90-minute coronary artery stenosis (CAS), which reduced coronary blood flow by 40% for 90 minutes, and subsequent myocardial stunning after reperfusion in chronically instrumented conscious pigs. In pigs with regional cardiac denervation (CD), myocardial stunning was intensified, ie, at 12 hours reperfusion wall thickening (WT) was depressed more, P<0.05, in CD (-46+/-5%) as compared with intact pigs (-31+/-3%) and remained depressed in CD at 24 hours reperfusion (-45+/-6%). Although the TTC technique was negative for infarct, histopathological analysis revealed patchy necrosis present in 11+/-2% of the area at risk. In intact pigs, WT had essentially recovered at 24 hours without infarct. In CD pigs treated with either an antioxidant, N-2-mercaptopropionyl glycine (MPG, 100 mg/kg per hour) or systemic nitric oxide synthase inhibition using N(omega)-nitro-L-arginine (L-NA, 30 mg/kg for 3 days), recovery of wall thickening was similar to that in pigs with intact nerves and without evidence of infarct. Immunohistochemistry analysis for 3-nitrotyrosine in tissue after CAS and 1 hour reperfusion demonstrated enhanced peroxynitrite-related protein nitration in pigs with regional CD compared with pigs with intact cardiac nerves, and pigs with regional CD and MPG or L-NA. Thus, reperfusion after myocardial ischemia in the setting of CD results in enhanced stunning and development of infarct. The underlying mechanism appears to involve nitric oxide and reactive oxygen species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delayed adaptation of the heart to stress: late preconditioning.

The early phase of preconditioning (PC) lasts 2 to 3 hours and protects against myocardial infarction, but not against stunning. In contrast, the late phase of PC lasts for 3 to 4 days and protects against both myocardial stunning and infarction, making this phenomenon more clinically relevant. Late PC is a genetic reprogramming of the heart that involves the activation of several stress-respon...

متن کامل

Sympathetic Nerves and Myocyte Necrosis

The left ventricle is richly supplied with sympathetic nerves, which are spatially localized next to cardiac myocytes in a fashion that permits the rapid transmission of autonomic signals via the release of norepinephrine. Previous investigation in the heart has largely focused on the local release and reuptake kinetics of norepinephrine in conjunction with its downstream receptor-mediated even...

متن کامل

SUBJECT CLASSIFICATION (Example: RNOMICS)

Heart disease is the major causes of hospitalization, morbidity and mortality worldwide. Reactive oxygen species (ROS) are proposed to contribute to the deterioration of cardiac function in patients with heart diseases. ROS are increased in the failing heart and involved in atherosclerosis, myocardial ischemia/reperfusion injury, and heart failure. Increased production of ROS directly or indire...

متن کامل

Neuronal nitric oxide synthase in hypertension – an update

Hypertension is a prevalent condition worldwide and is the key risk factor for fatal cardiovascular complications, such as stroke, sudden cardiac death and heart failure. Reduced bioavailability of nitric oxide (NO) in the endothelium is an important precursor for impaired vasodilation and hypertension. In the heart, NO deficiency deteriorates the adverse consequences of pressure-overload and c...

متن کامل

Repetitive myocardial stunning in pigs is associated with an increased formation of reactive nitrogen species.

The “oxyradical hypothesis” of myocardial stunning proposes that superoxide, released on reperfusion, leads to contractile dysfunction via the production of the more reactive hydroxyl free radical from the iron catalysed Haber-Weiss reaction. However, superoxide reacts many times faster with nitric oxide (NO), than with ferric iron, leading to the formation of peroxynitrite (ONOO), which is a p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 93 9  شماره 

صفحات  -

تاریخ انتشار 2003